Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A bicapped trigonal-prismatic lead complex: catena-poly[[[aquabis(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ lead (II) $]-\mu^{-}$ squarato- $\left.\kappa O^{1}: \kappa^{2} O^{2}, O^{3}\right]$ dihydrate]

Ibrahim Uçar,* Ahmet Bulut and Canan Kazak

Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139 Kurupelit-Samsun, Turkey
Correspondence e-mail: iucar@omu.edu.tr

Received 30 June 2005
Accepted 1 August 2005
Online 31 August 2005
The asymmetric unit of the title compound, $\left\{\left[\mathrm{Pb}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\right.\right.$ $\left.\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, contains one squarate dianion, two phenanthroline (phen) ligands and one aqua ligand all coordinated to Pb , and two solvent water molecules. The eight-coordinate Pb metal ion displays a distorted bicapped trigonal-prismatic coordination environment, defined by three squarate O atoms, four N atoms from two chelating phen ligands and one O atom from the coordinated water molecule. The crystal structure contains chains of squarate-$1,2,3$-bridged $\mathrm{Pb}^{\mathrm{II}}$ ions running in the [010] direction. These polymeric chains are linked to one another via offset face-toface $\pi-\pi$ interactions between the phen ligands, which lead to a two-dimensional network extending along the (001) plane. The crystal structure is also stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen-bond interactions, forming a threedimensional network.

Comment

Increasing attention has been devoted to the study of the coordination chemistry of the squarate ligand, $\mathrm{C}_{4} \mathrm{O}_{4}{ }^{2-}$, by both inorganic and bioinorganic chemists during the past few years (van Ooijen et al., 1978; Reinprecht et al., 1980; Yufit et al., 1999). Squarate acts as a bridge between two or more metal atoms in mono- or polydentate coordination modes when acting as a ligand towards first row transition metal ions (Trombe et al., 2002; Millet et al., 2003). It coordinates to $\mathrm{Fe}^{\mathrm{II}}$, $\mathrm{Fe}^{\mathrm{III}}, \mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Cu}^{\mathrm{II}}$ complexes in a $\mu-1,3$ fashion, giving binuclear (Bernardinelli et al., 1989) and chain structures (Lee et al., 1996), whereas the $\mu-1,2$ coordination mode has been reported for binuclear and chain complexes of $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ (Castro et al., 1997; Crispini et al., 2000). It is also observed that the squarate anion, with $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Ni}^{\mathrm{II}}$, acts as a tetramonodentate ligand and forms polynuclear compounds (Castro et al., 1995). The chelating and bis-chelating coordination modes are only possible in complexes with larger metal
ions, such as alkaline and rare-earth cations (Lisnard et al., 2003; Modec et al., 2003). In all the cases reported so far, metal-squarate complexes have been found interesting in terms of the structural relationships between their respective solid-state architectures.

On the other hand, $\mathrm{Pb}^{\text {II }}$ compounds have been increasingly studied owing to their possible applications in different fields, especially in environmental protection, because of the toxicity of lead, and in biological systems, for the diverse interactions of lead with biological molecules. In $\mathrm{Pb}^{\mathrm{II}}$, lanthanide and actinide compounds, the coordination number eight is most commonly found (Oldham et al., 2002; Fan et al., 2003; Gao et al., 2005). For eight-coordination, there are three main structure types, viz. (i) cubic, (ii) square antiprismatic and (iii) dodecahedral, the last two of which are preferred for molecules. Geometry (iii) is observed in the title compound, (I). In our ongoing research on squaric acid, we have synthesized some mixed-ligand metal(II) complexes of squaric acid, and their structures have been reported. In these compounds,

Figure 1
A view of the $\mathrm{Pb}^{\mathrm{II}}$ coordination in (I), shown with 30% probability displacement ellipsoids and arbitrary spheres for the H atoms. The water molecules have been omitted for clarity. [Symmetry code: (iii) $x, y-1, z$.]
squaric acid behaves as a monodentate ligand (Bulut et al., 2004; Uçar et al., 2005), while in (I), it acts as both a monodentate and a bidentate ligand.

A view of the molecule of (I) and its atom-numbering scheme are shown in Fig. 1. The $\mathrm{Pb}^{\mathrm{II}}$ ion is an eight-coordinate environment, defined by four O atoms from squarate and aqua ligands, and four N atoms from two chelating 1,10-phenanthroline (phen) ligands. Although the coordination geometry around the $\mathrm{Pb}^{\mathrm{II}}$ ion is irregular, presumably as a result of the steric constraints arising from the shape of the ligands, it can be described as a distorted bicapped trigonal prism (Fig. 2).

In the bicapped trigonal prism, the O1/O5/N3 and O3iii/ $\mathrm{O} 4^{\mathrm{iiij}} / \mathrm{N} 2$ triangular planes form the bases; the dihedral angle between these planes is $21.49(17)^{\circ}$. The rectangular faces, $\mathrm{O} 1 /$ $\mathrm{O} 3^{\mathrm{iiii}} / \mathrm{O} 4^{\mathrm{iii}} / \mathrm{N} 3$ (plane 1), O1/O3 ${ }^{\text {iii }} / \mathrm{N} 2 / \mathrm{O} 5$ (plane 2) and $\mathrm{N} 2 / \mathrm{O} 4{ }^{\mathrm{iii}} /$ $\mathrm{N} 3 / \mathrm{O} 5$ (plane 3), are almost planar, with r.m.s. deviations of $0.1167,0.0160$ and $0.4530 \AA$, respectively; the maximum deviations from these planes are, respectively, 0.148 (2) for atom O3 ${ }^{\text {iii }}, 0.019$ (2) for atom O1 and 0.516 (2) \AA for atom N 2. The dihedral angles between these least-squares planes are $50.88(8)^{\circ}$ between planes 1 and 2, $61.23(10)^{\circ}$ between planes 2 and 3 , and $68.18(9)^{\circ}$ between planes 1 and 3 . The dihedral angles between plane 1 and the nearly parallel triangular bases are 76.41 (10) and $68.19(9)^{\circ}$. From the bond angles (see Table 1), it is suggested that four O atoms form the equatorial plane ($\mathrm{O} 1 / \mathrm{O} 3^{\mathrm{iiii}} / \mathrm{O} 4^{\mathrm{iii}} / \mathrm{O} 5$) of the bicapped trigonal prism, while the $\mathrm{N} 1 / \mathrm{N} 2$ and $\mathrm{N} 3 / \mathrm{N} 4$ atom pairs occupy the pseudo-axial positions. The capped $\mathrm{Pb} 1-\mathrm{N} 4$ and $\mathrm{Pb} 1-\mathrm{N} 1$ distances [2.821 (4) and 2.699 (3) \AA] are the longest and shortest of the $\mathrm{Pb}-\mathrm{N}$ bond distances, respectively, while the other $\mathrm{Pb}-\mathrm{N}$ distances are in the range 2.772 (4)-2.799 (3) \AA. The $\mathrm{Pb}-\mathrm{O}$ bond distances range from 2.436 (3) to 2.869 (4) A. These bond distances are in agreement with those observed in other $\mathrm{Pb}^{\mathrm{II}}$ complexes (Furutachi et al., 2000; Li et al., 2004; Dale et al., 2004; Xiao et al., 2004).

In the crystal structure, the squarate dianion adopts a bridging position between the $\mathrm{Pb}^{\mathrm{II}}$ atoms, coordinating via

Figure 2
A detail of (I), illustrating the bicapped trigonal-prismatic geometry of the Pb atom. [Symmetry code: (iii) $x, y-1, z$.]
three of its O atoms in a $\mu-1,2,3$ fashion, forming 'zigzag' chains in the direction of the crystallographic b axis (Figs. 3 and 4). The squarate dianion coordinates to one $\mathrm{Pb}^{\mathrm{II}}$ ion as a bidentate ligand (via atoms O 3 and O 4), forming a fivemembered chelate ring, while it coordinates to another $\mathrm{Pb}^{\text {II }}$ ion as a monodentate ligand (via O1). The O3-C27-C28O 4 torsion angle is $3.0(7)^{\circ}$, while the $\mathrm{O} 2-\mathrm{C} 26-\mathrm{C} 25-\mathrm{O} 1$ angle is $4.4(8)^{\circ}$. The O3 . . O4 distance in the five-membered squarate chelate ring is 3.107 (5) \AA, whereas the distance between other squarate O atoms, viz. the monodentate squarate O1 and uncoordinated O2 atoms, is 3.183 (5) \AA. The phen ligands are approximately planar, with r.m.s. deviations of 0.0427 and $0.0141 \AA$ for N1/N2/C1-C12 and N3/N4/C13C 24 , respectively. The dihedral angles between the squarate plane and the phen mean planes are 85.31 (8) and $69.79(9)^{\circ}$, while that between the phen mean planes is $40.29(5)^{\circ}$.

The crystal packing of (I) is formed via intermolecular hydrogen bonding (Fig. 3) and strong $\pi-\pi$ interactions (Fig. 4). The two solvent water molecules, the aqua ligand, and squarate atoms O 2 and O 3 are involved in interchain hydrogen bonding (see Table 2 for details). The one-dimensional poly-

Figure 3
The zigzag chain structure of the title $\mathrm{Pb}^{\text {II }}$ complex, with intra- and interchain interactions indicated by dashed lines.

Figure 4
The extended two-dimensional structure of (I); the interchain offset face-to-face $\pi-\pi$ interactions are indicated by dashed lines. [Symmetry code: (iv) $-x+1,-y,-z+2$.]
meric chains are also linked together via offset face-to-face $\pi-\pi$ interactions between the phen ligands, which lead to a two-dimensional network extending along the (001) plane (Fig. 4). These intermolecular interactions occur between two symmetry-related phen rings (ring A; $\mathrm{C} 16-\mathrm{C} 19 / \mathrm{C} 23 / \mathrm{C} 24$). Ring A is oriented in such a way that the perpendicular distance from A to $A^{\text {iv }}$ is $3.423 \AA$, the closest interatomic distance being $\mathrm{C} 17 \cdots \mathrm{C} 24^{\text {iv }}$ [3.427 (7) \AA; symmetry code: (iv) $-x+1,-y,-z+2]$; the distance between the ring centroids is 3.766 (4) \AA. The other $\pi-\pi$ contact occurs between phen rings A and $B(\mathrm{C} 13-\mathrm{C} 16 / \mathrm{C} 24 / \mathrm{N} 3)$. The perpendicular distance between rings A and $B^{\text {iv }}\left(B^{\text {iv }}\right.$ to $\left.A\right)$ is $3.423 \AA$, the closest interatomic distance is $\mathrm{C} 15 \cdots \mathrm{C} 19^{\text {iv }}$ [3.421 (7) \AA], and the dihedral angle between the planes of these rings is $0.37(17)^{\circ}$. The distance between the ring centroids is 3.635 (4) \AA. The shortest interchain $\mathrm{Pb} \cdots \mathrm{Pb}$ distance is 9.946 (3) \AA for $\mathrm{Pb} 1 \cdots \mathrm{~Pb} 1\left(x,-y+\frac{1}{2}, z-\frac{1}{2}\right)$, whereas the intrachain equivalent is $7.2746(3) \AA$ for $\operatorname{Pb} 1 \cdots \operatorname{Pb} 1(x,-1+y, z)$.

Experimental

Squaric acid ($0.57 \mathrm{~g}, 5 \mathrm{mmol}$) dissolved in water (25 ml) was neutralized with $\mathrm{NaOH}(0.40 \mathrm{~g}, 10 \mathrm{mmol})$ and the mixture was added to a hot solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.83 \mathrm{~g}, 5 \mathrm{mmol})$ dissolved in water $(50 \mathrm{ml})$. The mixture was stirred at 333 K for 12 h and then cooled to room temperature. The white crystals of $\mathrm{PbSq} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ that formed were filtered off, washed with water and alcohol, and dried in a vacuum. A solution of 1,10-phenanthroline ($0.36 \mathrm{~g}, 2 \mathrm{mmol}$) in methanol (50 ml) was added dropwise with stirring to a suspension of $\mathrm{PbSq} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.35 \mathrm{~g}, 1 \mathrm{mmol})$ in water $(50 \mathrm{ml})$. The resulting white solution was refluxed for about 2 h and then cooled to room temperature. A few days later, well formed white crystals were selected for X-ray studies.

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=733.70$
Monoclinic, $P 2_{1} / c$
$a=18.5438$ (10) \AA
$b=7.2746$ (3) A
$c=19.8774$ (11) \AA
$\beta=106.578(4)^{\circ}$.
$V=2570.0(2) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.255, T_{\text {max }}=0.666$
39366 measured reflections
5638 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.068$
$S=1.02$
5638 reflections
386 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{Pb} 1$	$2.699(3)$	$\mathrm{O} 1-\mathrm{Pb} 1$	$2.436(3)$
$\mathrm{N} 2-\mathrm{Pb} 1$	$2.772(4)$	$\mathrm{O} 3-\mathrm{Pb} 1^{\mathrm{i}}$	$2.623(3)$
$\mathrm{N} 3-\mathrm{Pb} 1$	$2.799(3)$	$\mathrm{O} 4-\mathrm{Pb} 1^{\mathrm{i}}$	$2.869(4)$
$\mathrm{N} 4-\mathrm{Pb} 1$	$2.821(4)$	$\mathrm{O} 5-\mathrm{Pb} 1$	$2.675(3)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 5$	$80.41(11)$	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$60.40(10)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 1$	$82.01(11)$	$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 3$	$101.61(11)$
$\mathrm{O} 5-\mathrm{Pb} 1-\mathrm{N} 1$	$75.94(10)$	$\mathrm{O} 5-\mathrm{Pb} 1-\mathrm{N} 3$	$77.52(10)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$138.21(10)$	$\mathrm{N} 1-\mathrm{Pb} 1-\mathrm{N} 3$	$152.20(11)$
$\mathrm{O} 5-\mathrm{Pb} 1-\mathrm{N} 2$	$73.66(11)$	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{N} 3$	$104.00(10)$

Symmetry code: (i) $x, y+1, z$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5A \cdots O 4	0.83 (3)	2.00 (3)	2.792 (5)	161 (5)
$\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 6$	0.85 (3)	1.97 (3)	2.817 (5)	176 (5)
$\mathrm{O} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2^{\text {ii }}$	0.80 (3)	2.09 (3)	2.878 (5)	168 (7)
O6-H6B $\cdots \mathrm{O}^{\text {v }}$	0.83 (3)	2.11 (4)	2.887 (6)	156 (7)
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 3^{\text {iii }}$	0.84 (3)	1.96 (3)	2.800 (5)	173 (5)
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 2$	0.82 (3)	2.15 (3)	2.947 (6)	166 (5)

Symmetry codes: (ii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (iii) $x, y-1, z$; (v) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

H atoms attached to C atoms were placed at calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and were allowed for as riding atoms $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $\left.1.2 U_{\text {eq }}(\mathrm{C})\right]$. The remaining H atoms were located in a difference map and were refined with the $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to 0.85 (3) and 1.35 (3) \AA, respectively. The highest peak and deepest hole in the final difference map were located 1.00 and $0.73 \AA$, respectively, from atom Pb 1 .

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1858). Services for accessing these data are described at the back of the journal.

References

Bernardinelli, G., Deguenon, D., Soules, R. \& Castan, P. (1989). Can. J. Chem. 67, 1158-1165.
Bulut, B., Uçar, I., Yeşilel, O. Z., Içbudak, H., Ölmez, H. \& Büyükgüngör, O. (2004). Acta Cryst. C60, m526-m528.

Castro, I., Calatayud, M. L., Sletten, J., Lloret, F. \& Julve, M. (1997). J. Chem. Soc. Dalton Trans. pp. 811-817.
Castro, I., Sletten, J., Calatayud, M. L., Julve, M., Cano, J., Lloret, F. \& Caneschi, A. (1995). Inorg. Chem. 34, 4903-4909.
Crispini, A., Pucci, D., Aiello, I. \& Ghedini, M. (2000). Inorg. Chim. Acta, 304, 219-223.
Dale, S. H., Elsegood, M. R. J. \& Kainth, S. (2004). Acta Cryst. C60, m76-m78.
Fan, J., Shu, M. H., Okamura, T., Li, Y. Z., Sun, W. Z., Tang, W. X \& Ueyama, N. (2003). New J. Chem. 27, 1307-1306.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Furutachi, H., Fujinami, S. \& Okawa, H. (2000). J. Chem. Soc. Dalton Trans. pp. 2761-2769.

metal-organic compounds

Gao, S., Zhu, Z. B., Huo, L. H. \& Ng, S. W. (2005). Acta Cryst. E61, m528m530.
Lee, R. R., Wang, C. C. \& Wang, Y. (1996). Acta Cryst. B52, 966-975.
Li, J. F., Zhao, Y. J., Li, X. H. \& Hu, M. L. (2004). Acta Cryst. E60, m1210m1212.
Lisnard, L., Mialane, P., Dolbecq, A., Marrot, J. \& Secheresse, F. (2003). Inorg. Chem. Commun. 6, 503-505.
Millet, P., Sabadié, L., Galy, J. \& Trombe, J. C. (2003). J. Solid State Chem. 173, 49-53.
Modec, B., Brencic, J. V., Burkholder, E. M. \& Zubieta, J. (2003). Dalton Trans. pp. 4618-4625.
Oldham, W. J., Scott, B. L., Abney, K. D., Smith, W. H. \& Costa, D. A. (2002). Acta Cryst. C58, m139-m140.

Ooijen, J. A. C. van, Reedijk, J. \& Spek, A. L. (1978). Inorg. Chem. 18, 11841189.

Reinprecht, J. T., Miller, J. G., Vogel, G. C., Haddad, M. S. \& Hendrikson, D. N. (1980). Inorg. Chem. 19, 927-931.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Trombe, J. C., Sabadie, L. \& Milet, P. (2002). Solid State Sci. 4, 1209-1212.
Uçar, I., Bulut, A. \& Büyükgüngör, O. (2005). Acta Cryst. C61, m218-m220.
Xiao, H.-P., Zhu, N.-W. \& Hu, M.-L. (2004). Acta Cryst. E60, m800-m801.
Yufit, D. S., Price, D. J., Howard, J. A. K., Gutchke, S. O. H., Powell, A. K. \& Wood, P. T. (1999). Chem. Commun. pp. 1561-1562.

